Shortcuts

Source code for ding.policy.a2c

from typing import List, Dict, Any, Tuple, Union
from collections import namedtuple
import torch

from ding.rl_utils import a2c_data, a2c_error, get_gae_with_default_last_value, get_train_sample, \
                        a2c_error_continuous
from ding.torch_utils import Adam, to_device
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY, split_data_generator
from ding.utils.data import default_collate, default_decollate
from .base_policy import Policy
from .common_utils import default_preprocess_learn


[docs]@POLICY_REGISTRY.register('a2c') class A2CPolicy(Policy): r""" Overview: Policy class of A2C algorithm. """ config = dict( # (string) RL policy register name (refer to function "register_policy"). type='a2c', # (bool) Whether to use cuda for network. cuda=False, # (bool) whether use on-policy training pipeline(behaviour policy and training policy are the same) on_policy=True, # for a2c strictly on policy algorithm, this line should not be seen by users priority=False, # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True. priority_IS_weight=False, # (str) Which kind of action space used in PPOPolicy, ['discrete', 'continuous'] action_space='discrete', learn=dict( # (int) for a2c, update_per_collect must be 1. update_per_collect=1, # fixed value, this line should not be modified by users batch_size=64, learning_rate=0.001, # (List[float]) betas=(0.9, 0.999), # (float) eps=1e-8, # (float) grad_norm=0.5, # ============================================================== # The following configs is algorithm-specific # ============================================================== # (float) loss weight of the value network, the weight of policy network is set to 1 value_weight=0.5, # (float) loss weight of the entropy regularization, the weight of policy network is set to 1 entropy_weight=0.01, # (bool) Whether to normalize advantage. Default to False. adv_norm=False, ignore_done=False, ), collect=dict( # (int) collect n_sample data, train model n_iteration times # n_sample=80, unroll_len=1, # ============================================================== # The following configs is algorithm-specific # ============================================================== # (float) discount factor for future reward, defaults int [0, 1] discount_factor=0.9, # (float) the trade-off factor lambda to balance 1step td and mc gae_lambda=0.95, ), eval=dict(), ) def default_model(self) -> Tuple[str, List[str]]: return 'vac', ['ding.model.template.vac'] def _init_learn(self) -> None: r""" Overview: Learn mode init method. Called by ``self.__init__``. Init the optimizer, algorithm config, main and target models. """ assert self._cfg.action_space in ["continuous", "discrete"] # Optimizer self._optimizer = Adam( self._model.parameters(), lr=self._cfg.learn.learning_rate, betas=self._cfg.learn.betas, eps=self._cfg.learn.eps ) # Algorithm config self._priority = self._cfg.priority self._priority_IS_weight = self._cfg.priority_IS_weight self._value_weight = self._cfg.learn.value_weight self._entropy_weight = self._cfg.learn.entropy_weight self._adv_norm = self._cfg.learn.adv_norm self._grad_norm = self._cfg.learn.grad_norm # Main and target models self._learn_model = model_wrap(self._model, wrapper_name='base') self._learn_model.reset() def _forward_learn(self, data: dict) -> Dict[str, Any]: r""" Overview: Forward and backward function of learn mode. Arguments: - data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward', 'next_obs','adv'] Returns: - info_dict (:obj:`Dict[str, Any]`): Including current lr and loss. """ data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=False) if self._cuda: data = to_device(data, self._device) self._learn_model.train() for batch in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True): # forward output = self._learn_model.forward(batch['obs'], mode='compute_actor_critic') adv = batch['adv'] return_ = batch['value'] + adv if self._adv_norm: # norm adv in total train_batch adv = (adv - adv.mean()) / (adv.std() + 1e-8) error_data = a2c_data(output['logit'], batch['action'], output['value'], adv, return_, batch['weight']) # Calculate A2C loss if self._action_space == 'continuous': a2c_loss = a2c_error_continuous(error_data) elif self._action_space == 'discrete': a2c_loss = a2c_error(error_data) wv, we = self._value_weight, self._entropy_weight total_loss = a2c_loss.policy_loss + wv * a2c_loss.value_loss - we * a2c_loss.entropy_loss # ==================== # A2C-learning update # ==================== self._optimizer.zero_grad() total_loss.backward() grad_norm = torch.nn.utils.clip_grad_norm_( list(self._learn_model.parameters()), max_norm=self._grad_norm, ) self._optimizer.step() # ============= # after update # ============= # only record last updates information in logger return { 'cur_lr': self._optimizer.param_groups[0]['lr'], 'total_loss': total_loss.item(), 'policy_loss': a2c_loss.policy_loss.item(), 'value_loss': a2c_loss.value_loss.item(), 'entropy_loss': a2c_loss.entropy_loss.item(), 'adv_abs_max': adv.abs().max().item(), 'grad_norm': grad_norm, } def _state_dict_learn(self) -> Dict[str, Any]: return { 'model': self._learn_model.state_dict(), 'optimizer': self._optimizer.state_dict(), } def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: self._learn_model.load_state_dict(state_dict['model']) self._optimizer.load_state_dict(state_dict['optimizer']) def _init_collect(self) -> None: r""" Overview: Collect mode init method. Called by ``self.__init__``. Init traj and unroll length, collect model. """ assert self._cfg.action_space in ["continuous", "discrete"] self._unroll_len = self._cfg.collect.unroll_len self._action_space = self._cfg.action_space if self._action_space == 'continuous': self._collect_model = model_wrap(self._model, wrapper_name='reparam_sample') elif self._action_space == 'discrete': self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample') self._collect_model.reset() # Algorithm self._gamma = self._cfg.collect.discount_factor self._gae_lambda = self._cfg.collect.gae_lambda def _forward_collect(self, data: dict) -> dict: r""" Overview: Forward function of collect mode. Arguments: - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. Returns: - output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs. ReturnsKeys - necessary: ``action`` """ data_id = list(data.keys()) data = default_collate(list(data.values())) if self._cuda: data = to_device(data, self._device) self._collect_model.eval() with torch.no_grad(): output = self._collect_model.forward(data, mode='compute_actor_critic') if self._cuda: output = to_device(output, 'cpu') output = default_decollate(output) return {i: d for i, d in zip(data_id, output)} def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict: r""" Overview: Generate dict type transition data from inputs. Arguments: - obs (:obj:`Any`): Env observation - model_output (:obj:`dict`): Output of collect model, including at least ['action'] - timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done'] \ (here 'obs' indicates obs after env step). Returns: - transition (:obj:`dict`): Dict type transition data. """ transition = { 'obs': obs, 'next_obs': timestep.obs, 'action': model_output['action'], 'value': model_output['value'], 'reward': timestep.reward, 'done': timestep.done, } return transition def _get_train_sample(self, data: list) -> Union[None, List[Any]]: r""" Overview: Get the trajectory and the n step return data, then sample from the n_step return data Arguments: - data (:obj:`list`): The trajectory's buffer list Returns: - samples (:obj:`dict`): The training samples generated """ data = get_gae_with_default_last_value( data, data[-1]['done'], gamma=self._gamma, gae_lambda=self._gae_lambda, cuda=self._cuda, ) return get_train_sample(data, self._unroll_len) def _init_eval(self) -> None: r""" Overview: Evaluate mode init method. Called by ``self.__init__``. Init eval model with argmax strategy. """ assert self._cfg.action_space in ["continuous", "discrete"] self._action_space = self._cfg.action_space if self._action_space == 'continuous': self._eval_model = model_wrap(self._model, wrapper_name='deterministic_sample') elif self._action_space == 'discrete': self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') self._eval_model.reset() def _forward_eval(self, data: dict) -> dict: r""" Overview: Forward function of eval mode, similar to ``self._forward_collect``. Arguments: - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. Returns: - output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env. ReturnsKeys - necessary: ``action`` """ data_id = list(data.keys()) data = default_collate(list(data.values())) if self._cuda: data = to_device(data, self._device) self._eval_model.eval() with torch.no_grad(): output = self._eval_model.forward(data, mode='compute_actor') if self._cuda: output = to_device(output, 'cpu') output = default_decollate(output) return {i: d for i, d in zip(data_id, output)} def _monitor_vars_learn(self) -> List[str]: return super()._monitor_vars_learn() + ['policy_loss', 'value_loss', 'entropy_loss', 'adv_abs_max', 'grad_norm']

© Copyright 2021, OpenDILab Contributors. Revision 069ece72.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
Versions
latest
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.