Shortcuts

Source code for ding.policy.wqmix

from typing import List, Dict, Any, Tuple, Union, Optional
from collections import namedtuple
import torch
import copy

from ding.torch_utils import RMSprop, to_device
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import timestep_collate, default_collate, default_decollate
from .base_policy import Policy
from ding.policy.qmix import QMIXPolicy


[docs]@POLICY_REGISTRY.register('wqmix') class WQMIXPolicy(QMIXPolicy): r""" Overview: Policy class of WQMIX algorithm. WQMIX is a reinforcement learning algorithm modified from Qmix, \ you can view the paper in the following link https://arxiv.org/abs/2006.10800 Interface: _init_learn, _data_preprocess_learn, _forward_learn, _reset_learn, _state_dict_learn, _load_state_dict_learn\ _init_collect, _forward_collect, _reset_collect, _process_transition, _init_eval, _forward_eval\ _reset_eval, _get_train_sample, default_model Config: == ==================== ======== ============== ======================================== ======================= ID Symbol Type Default Value Description Other(Shape) == ==================== ======== ============== ======================================== ======================= 1 ``type`` str qmix | RL policy register name, refer to | this arg is optional, | registry ``POLICY_REGISTRY`` | a placeholder 2 ``cuda`` bool True | Whether to use cuda for network | this arg can be diff- | erent from modes 3 ``on_policy`` bool False | Whether the RL algorithm is on-policy | or off-policy 4. ``priority`` bool False | Whether use priority(PER) | priority sample, | update priority 5 | ``priority_`` bool False | Whether use Importance Sampling | IS weight | ``IS_weight`` | Weight to correct biased update. 6 | ``learn.update_`` int 20 | How many updates(iterations) to train | this args can be vary | ``per_collect`` | after collector's one collection. Only | from envs. Bigger val | valid in serial training | means more off-policy 7 | ``learn.target_`` float 0.001 | Target network update momentum | between[0,1] | ``update_theta`` | parameter. 8 | ``learn.discount`` float 0.99 | Reward's future discount factor, aka. | may be 1 when sparse | ``_factor`` | gamma | reward env == ==================== ======== ============== ======================================== ======================= """ config = dict( # (str) RL policy register name (refer to function "POLICY_REGISTRY"). type='wqmix', # (bool) Whether to use cuda for network. cuda=True, # (bool) Whether the RL algorithm is on-policy or off-policy. on_policy=False, # (bool) Whether use priority(priority sample, IS weight, update priority) priority=False, # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True. priority_IS_weight=False, learn=dict( update_per_collect=20, batch_size=32, learning_rate=0.0005, clip_value=100, # ============================================================== # The following configs is algorithm-specific # ============================================================== # (float) Target network update momentum parameter. # in [0, 1]. target_update_theta=0.008, # (float) The discount factor for future rewards, # in [0, 1]. discount_factor=0.99, w=0.5, # for OW # w = 0.75, # for CW wqmix_ow=True, ), collect=dict( # (int) Only one of [n_sample, n_episode] shoule be set # n_episode=32, # (int) Cut trajectories into pieces with length "unroll_len", the length of timesteps # in each forward when training. In qmix, it is greater than 1 because there is RNN. unroll_len=10, ), eval=dict(), other=dict( eps=dict( # (str) Type of epsilon decay type='exp', # (float) Start value for epsilon decay, in [0, 1]. # 0 means not use epsilon decay. start=1, # (float) Start value for epsilon decay, in [0, 1]. end=0.05, # (int) Decay length(env step) decay=50000, ), replay_buffer=dict( replay_buffer_size=5000, # (int) The maximum reuse times of each data max_reuse=1e+9, max_staleness=1e+9, ), ), ) def default_model(self) -> Tuple[str, List[str]]: """ Overview: Return this algorithm default model setting for demonstration. Returns: - model_info (:obj:`Tuple[str, List[str]]`): model name and mode import_names .. note:: The user can define and use customized network model but must obey the same inferface definition indicated \ by import_names path. For WQMIX, ``ding.model.template.wqmix`` """ return 'wqmix', ['ding.model.template.wqmix'] def _init_learn(self) -> None: """ Overview: Learn mode init method. Called by ``self.__init__``. Init the learner model of WQMIXPolicy Arguments: .. note:: The _init_learn method takes the argument from the self._cfg.learn in the config file - learning_rate (:obj:`float`): The learning rate fo the optimizer - gamma (:obj:`float`): The discount factor - agent_num (:obj:`int`): Since this is a multi-agent algorithm, we need to input the agent num. - batch_size (:obj:`int`): Need batch size info to init hidden_state plugins """ self._priority = self._cfg.priority self._priority_IS_weight = self._cfg.priority_IS_weight assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in WQMIX" self._optimizer = RMSprop( params=list(self._model._q_network.parameters()) + list(self._model._mixer.parameters()), lr=self._cfg.learn.learning_rate, alpha=0.99, eps=0.00001 ) self._gamma = self._cfg.learn.discount_factor self._optimizer_star = RMSprop( params=list(self._model._q_network_star.parameters()) + list(self._model._mixer_star.parameters()), lr=self._cfg.learn.learning_rate, alpha=0.99, eps=0.00001 ) self._learn_model = model_wrap( self._model, wrapper_name='hidden_state', state_num=self._cfg.learn.batch_size, init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)] ) self._learn_model.reset() def _data_preprocess_learn(self, data: List[Any]) -> dict: r""" Overview: Preprocess the data to fit the required data format for learning Arguments: - data (:obj:`List[Dict[str, Any]]`): the data collected from collect function Returns: - data (:obj:`Dict[str, Any]`): the processed data, from \ [len=B, ele={dict_key: [len=T, ele=Tensor(any_dims)]}] -> {dict_key: Tensor([T, B, any_dims])} """ # data preprocess data = timestep_collate(data) if self._cuda: data = to_device(data, self._device) data['weight'] = data.get('weight', None) data['done'] = data['done'].float() return data def _forward_learn(self, data: dict) -> Dict[str, Any]: r""" Overview: Forward and backward function of learn mode. Arguments: - data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training, values are torch.Tensor or \ np.ndarray or dict/list combinations. Returns: - info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \ recorded in text log and tensorboard, values are python scalar or a list of scalars. ArgumentsKeys: - necessary: ``obs``, ``next_obs``, ``action``, ``reward``, ``weight``, ``prev_state``, ``done`` ReturnsKeys: - necessary: ``cur_lr``, ``total_loss`` - cur_lr (:obj:`float`): Current learning rate - total_loss (:obj:`float`): The calculated loss """ data = self._data_preprocess_learn(data) # ==================== # forward # ==================== self._learn_model.train() inputs = {'obs': data['obs'], 'action': data['action']} # for hidden_state plugin, we need to reset the main model and target model self._learn_model.reset(state=data['prev_state'][0]) total_q = self._learn_model.forward(inputs, single_step=False, q_star=False)['total_q'] self._learn_model.reset(state=data['prev_state'][0]) total_q_star = self._learn_model.forward(inputs, single_step=False, q_star=True)['total_q'] next_inputs = {'obs': data['next_obs']} self._learn_model.reset(state=data['prev_state'][1]) # TODO(pu) next_logit_detach = self._learn_model.forward( next_inputs, single_step=False, q_star=False )['logit'].clone().detach() next_inputs = {'obs': data['next_obs'], 'action': next_logit_detach.argmax(dim=-1)} with torch.no_grad(): self._learn_model.reset(state=data['prev_state'][1]) # TODO(pu) target_total_q = self._learn_model.forward(next_inputs, single_step=False, q_star=True)['total_q'] with torch.no_grad(): if data['done'] is not None: target_v = self._gamma * (1 - data['done']) * target_total_q + data['reward'] else: target_v = self._gamma * target_total_q + data['reward'] td_error = (total_q - target_v).clone().detach() data_ = v_1step_td_data(total_q, target_total_q, data['reward'], data['done'], data['weight']) _, td_error_per_sample = v_1step_td_error(data_, self._gamma) data_star = v_1step_td_data(total_q_star, target_total_q, data['reward'], data['done'], data['weight']) loss_star, td_error_per_sample_star_ = v_1step_td_error(data_star, self._gamma) # our implemention is based on the https://github.com/oxwhirl/wqmix # Weighting alpha_to_use = self._cfg.learn.alpha if self._cfg.learn.wqmix_ow: # Optimistically-Weighted ws = torch.full_like(td_error, alpha_to_use) # if td_error < 0, i.e. Q < y_i, then w =1; if not, w = alpha_to_use ws = torch.where(td_error < 0, torch.ones_like(td_error), ws) else: # Centrally-Weighted inputs = {'obs': data['obs']} self._learn_model.reset(state=data['prev_state'][0]) # TODO(pu) logit_detach = self._learn_model.forward(inputs, single_step=False, q_star=False)['logit'].clone().detach() cur_max_actions = logit_detach.argmax(dim=-1) inputs = {'obs': data['obs'], 'action': cur_max_actions} self._learn_model.reset(state=data['prev_state'][0]) # TODO(pu) max_action_qtot = self._learn_model.forward(inputs, single_step=False, q_star=True)['total_q'] # Q_star # Only if the action of each agent is optimal, then the joint action is optimal is_max_action = (data['action'] == cur_max_actions).min(dim=2)[0] # shape (H,B,N) -> (H,B) qtot_larger = target_v > max_action_qtot ws = torch.full_like(td_error, alpha_to_use) # if y_i > Q_star or u = u_star, then w =1; if not, w = alpha_to_use ws = torch.where(is_max_action | qtot_larger, torch.ones_like(td_error), ws) if data['weight'] is None: data['weight'] = torch.ones_like(data['reward']) loss_weighted = (ws.detach() * td_error_per_sample * data['weight']).mean() # ==================== # Q and Q_star update # ==================== self._optimizer.zero_grad() self._optimizer_star.zero_grad() loss_weighted.backward(retain_graph=True) loss_star.backward() grad_norm_q = torch.nn.utils.clip_grad_norm_( list(self._model._q_network.parameters()) + list(self._model._mixer.parameters()), self._cfg.learn.clip_value ) # Q grad_norm_q_star = torch.nn.utils.clip_grad_norm_( list(self._model._q_network_star.parameters()) + list(self._model._mixer_star.parameters()), self._cfg.learn.clip_value ) # Q_star self._optimizer.step() # Q update self._optimizer_star.step() # Q_star update # ============= # after update # ============= return { 'cur_lr': self._optimizer.defaults['lr'], 'total_loss': loss_weighted.item(), 'total_q': total_q.mean().item() / self._cfg.model.agent_num, 'target_reward_total_q': target_v.mean().item() / self._cfg.model.agent_num, 'target_total_q': target_total_q.mean().item() / self._cfg.model.agent_num, 'grad_norm_q': grad_norm_q, 'grad_norm_q_star': grad_norm_q_star, } def _state_dict_learn(self) -> Dict[str, Any]: r""" Overview: Return the state_dict of learn mode, usually including model and optimizer. Returns: - state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring. """ return { 'model': self._learn_model.state_dict(), 'optimizer': self._optimizer.state_dict(), 'optimizer_star': self._optimizer_star.state_dict(), } def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: r""" Overview: Load the state_dict variable into policy learn mode. Arguments: - state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before. .. tip:: If you want to only load some parts of model, you can simply set the ``strict`` argument in \ load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ complicated operation. """ self._learn_model.load_state_dict(state_dict['model']) self._optimizer.load_state_dict(state_dict['optimizer']) self._optimizer_star.load_state_dict(state_dict['optimizer_star'])

© Copyright 2021, OpenDILab Contributors. Revision 069ece72.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
Versions
latest
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.