Shortcuts

MDQN

概述

MDQN 是在 Munchausen Reinforcement Learning 中提出的。 作者将这种通用方法称为 “Munchausen Reinforcement Learning” (M-RL), 以纪念 Raspe 的《吹牛大王历险记》中的一段著名描写, 即 Baron 通过拉自己的头发从沼泽中脱身的情节。 从实际使用的角度来看, MDQN 和 DQN 之间的关键区别是 Soft-DQN (传统 DQN 算法的扩展)的即时奖励中添加了一个缩放的 log-policy 。

核心要点

1。 MDQN 是一种 无模型 (model-free)基于值函数 (value-based) 的强化学习算法。

2。 MDQN 只支持 离散 (discrete) 动作空间。

3。 MDQN 是一个 异策略 (off-policy) 算法。

4。 MDQN 使用 epsilon贪心 (eps-greedy) 来做探索 (exploration)。

5。 MDQN 增加了 动作间隔 (action gap) , 并具有隐式的 KL正则化 (KL regularization)

关键方程或关键框图

MDQN 中使用的目标 Q 值 (target Q value) 是:

\[\hat{q}_{\mathrm{m} \text {-dqn }}\left(r_t, s_{t+1}\right)=r_t+\alpha \tau \ln \pi_{\bar{\theta}}\left(a_t \mid s_t\right)+\gamma \sum_{a^{\prime} \in A} \pi_{\bar{\theta}}\left(a^{\prime} \mid s_{t+1}\right)\left(q_{\bar{\theta}}\left(s_{t+1}, a^{\prime}\right)-\tau \ln \pi_{\bar{\theta}}\left(a^{\prime} \mid s_{t+1}\right)\right)\]

我们使用以下公式计算 log-policy 的值: \(\alpha \tau \ln \pi_{\bar{\theta}}\left(a_t \mid s_t\right)\)

\[\tau \ln \pi_{k}=q_k-v_k-\tau \ln \left\langle 1, \exp \frac{q_k-v_k}{\tau}\right\rangle\]

其中 \(q_k\) 在我们的代码中表示为 target_q_current 。 对于最大熵部分 \(\tau \ln \pi_{\bar{\theta}}\left(a^{\prime} \mid s_{t+1}\right)\) 我们使用相同的公式进行计算,其中 \(q_{k+1}\) 在我们的代码中表示为 target_q

我们将 \(\tau \ln \pi(a \mid s)\) 替换为 \([\tau \ln \pi(a \mid s)]_{l_0}^0`\) 因为对数策略项 (log-policy term) 是无界的, 如果策略变得过于接近确定性策略 (deterministic policy) ,可能会导致数值性问题 (numerical issues) 。

同时还将 \(\pi_{\bar{\theta}}\left(a^{\prime} \mid s_{t+1}\right)\) 替换为 \(softmax(q-v)\) ,因为这是在官方实现中使用的方法,但他们并未在论文中提及。

我们使用上述改动后的配置在 asterix 进行测试,得到了与原论文相同的结果, 即MDQN可以增加动作间隙 (action gap) 。

../_images/action_gap.png

伪代码

../_images/mdqn.png

扩展

  • TBD

实现

MDQNPolicy 的默认配置如下:

MDQN 使用的 TD error 接口定义如下:

实验 Benchmark

Benchmark and comparison of mdqn algorithm

environment

best mean reward

evaluation results

config link

comparison

Asterix
(Asterix-v0)

8963

../_images/mdqn_asterix.png

config_link_asterix

sdqn(3513) paper(1718) dqn(3444)
SpaceInvaders
(SpaceInvaders-v0)

2211

../_images/mdqn_spaceinvaders.png

config_link_spaceinvaders

sdqn(1804) paper(2045) dqn(1228)
Enduro
(Enduro-v4)

1003

../_images/mdqn_enduro.png

config_link_enduro

sdqn(986.1) paper(1171) dqn(986.4)

我们的配置和论文中的配置的主要区别如下:

  • 我们收集了100个样本,进行了十次训练。而在原论文中,收集了4个样本,进行了一次训练。

  • 我们每500个迭代更新一次目标网络 (target network) ,而原论文每2000个迭代更新一次目标网络。

  • 我们用于探索的epsilon从1逐渐下降到0.05,而原论文的epsilon是从0.01到0.001。

P.S.:

  • 以上结果是在 seed 0 上运行同样配置得到的。

  • 对于像DQN这样的离散动作空间算法, 一般采用Atari环境集来进行测试, Atari 环境一般通过10M env_step 的最高均值奖励(highest mean reward)训练来评估。关于Atari环境的更多细节请参考: Atari 环境教程

参考文献

  • Vieillard, Nino, Olivier Pietquin, and Matthieu Geist. “Munchausen reinforcement learning.” Advances in Neural Information Processing Systems 33 (2020): 4235-4246.


© Copyright 2021, OpenDILab Contributors. Revision ae2e42a4.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
Versions
latest
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.